UNIVERSITY OF BUCHAREST
FACULTY OF PHYSICS

Guest
2024-11-22 1:32

 HOME     CONFERENCES     SEARCH            LOGIN     NEW USER     IMAGES   


Conference: Bucharest University Faculty of Physics 2003 Meeting


Section: Theoretical Physics and Applied Mathematics Seminar


Title:
Despre omogenizarea unor probleme parabolice cu conditii dinamice pe frontiera


Authors:
Claudia Timofte


Affiliation:
Catedra de Matematici, Facultatea de Fizica, Universitatea Bucuresti,

C.P. MG-11, Bucuresti, Magurele

E-mail: claudiatimofte@hotmail.com


E-mail


Keywords:


Abstract:
In acest articol vom analiza comportamentul asimptotic al solutiei unei probleme parabolice, cu conditii dinamice pe frontiera. Astfel de probleme apar in mod natural in multe modele matematice din teoria transferului caldurii intr-un solid in contact cu un fluid aflat n miscare, in modelarea curgerilor partial saturate in medii poroase, in probleme de difuzie in medii poroase (vezi [1]-[3]). Fie $\varepsilon$ un parametru mic ce ia valori \^{\i}ntr-un \c sir de numere tinz\^{a}nd c\u atre $0$ \c si fie $\Omega \subset {\rm I\! R}^{N}$ un domeniu m\u arginit. Acesta va fi perforat \^{\i}n mod periodic, cu perfora\c tii identice, de ordinul lui $\varepsilon $. \^{I}n domeniul perforat $\Omega^{\varepsilon}$ vom considera ecua\c tia c\u aldurii, cu o condi\c tie Dirichlet pe frontiera exterioar\u a \c si o condi\c tie dinamic\u a pe suprafa\c ta perfora\c tiilor. A\c sa cum vom vedea, la limit\u a, c\^{a}nd $\varepsilon \rightarrow 0$, vom ob\c tine o ecua\c tie cu coeficien\c ti constan\c ti, dar cu un termen nou, datorat influen\c tei condi\c tiei dinamice neomogene impuse pe suprafa\c ta perfora\c tiilor. Mai precis, vom studia comportamentul asimptotic al solu\c tiei $u^{\varepsilon }$ a urm\u atoarei pro\-bleme: \begin{equation} \left\{ \begin{array}{l} \displaystyle\frac{\partial u^{\varepsilon }}{\partial t}-\Delta u^{\varepsilon }=f(t,x),\quad \textrm{ \^{\i}n }\ \Omega ^{\varepsilon }\times (0,T), \\\\ \displaystyle \frac{\partial u^{\varepsilon }}{\partial n}+\varepsilon \frac{\partial u^{\varepsilon }}{\partial t}=\varepsilon g(t,x),\quad \textrm{ pe } S^{\varepsilon }\times (0,T),\\\\ u^{\varepsilon }(0,x)=u^{0}(x),\quad \textrm{ \^{\i}n }\ \Omega ^{\varepsilon },\, u^{\varepsilon }(0,x)=v^{0}(x),\ \textrm{ pe }\ S^{\varepsilon },\\\\ u^{\varepsilon }=0,\quad \textrm{ pe }\partial \Omega \times (0,T). \end{array} \right. \end{equation} \noindent Aici, $f\in L^{2}(0,T;L^{2}(\Omega )),$ $g\in L^{2}(0,T;H_{0}^{1}(\Omega )),$ $u^{0}\in L^{2}(\Omega ),$ $v^{0}\in L^{2}(S^{\varepsilon }),$ $[0,T]$ este intervalul de timp pe care vom lucra \c si $S^{\varepsilon }$ este frontiera perfora\c tiilor. \medskip \noindent Principalul rezultat de convergen\c t\u a din acest articol este urm\u atorul (vezi [3]): \medskip \textbf{Teorema 1. } Fie $u^{\varepsilon }$ solu\c tia unic\u a a problemei (1). Atunci, exist\u a o extensie $ \stackrel{\sim }{u}^{\varepsilon }$ a solu\c tiei $% u^{\varepsilon }$ la $\Omega \times (0,T)$ astfel \^{\i}nc\^{a}t \[ \stackrel{\sim }{u} ^{\varepsilon }\rightarrow u \quad \textrm{tare \^{\i}n } L^{2}(0,T; L^{2}(\Omega), \] \noindent unde $u$ este solu\c tia unic\u a a urm\u atorului sistem: \begin{equation} \left\{ \begin{array}{l} \displaystyle (\frac{\left| Y^{*}\right| }{\left| Y\right| }+\frac{\left| \partial F\right| }{\left| Y\right| })\frac{\partial u}{\partial t}-\nabla (Q\nabla u)=\frac{\left| Y^{*}\right| }{\left| Y\right| }f+\frac{\left| \partial F\right| }{\left| Y\right| }g,\quad \textrm{\^{\i}n }\Omega \times (0,T), \\\\ u=0,\quad \textrm{pe } \partial \Omega \times (0,T),\\\\ u(0,x)=u^{0}(x),\quad \textrm{ \^{\i}n }\Omega. \end{array} \right. \end{equation} \noindent Aici $Q=((q_{ij}))$ este matricea omogenizat\u a, ale c\u arei elemente sunt date prin: \smallskip \begin{equation} q_{ij}=\frac{\left| Y^{*}\right| }{\left| Y\right| }\delta _{ij}-\frac{1}{% \left| Y\right| }\int_{Y^{*}}\frac{\partial \eta _{j}}{\partial y_{i}}dy, \end{equation} \smallskip \noindent \^{\i}n func\c tie de solu\c tiile $\eta _{j}$ ale sistemului: \begin{equation} \left\{ \begin{array}{l} -\Delta \eta_{j}=0,\quad \textrm{\^{\i}n }Y^{\star},\\\\ \partial (\eta _{j}-y_{j})/ \partial n=0,\quad \textrm{pe }\partial F,\\\\ \eta _{j}\ \textrm{ este }Y-\textrm{periodic\u a}. \end{array} \right. \end{equation} \bigskip \noindent \^{I}n formulele anterioare, $F$ este perfora\c tia elementar\u a, $Y$ este celula elementar\u a de periodicitate \c si $Y^{\star}=Y\setminus {\overline F}$. \bigskip Deci, la limit\u a, c\^{a}nd $\varepsilon \rightarrow 0,$ ob\c tinem o ecua\c tie neomogen\u a cu coeficien\c ti constan\c ti, cu o condi\c tie Dirichlet pe frontier\u a, cu un termen suplimentar datorat contribu\c tiei p\u ar\c tii dinamice a condi\c tiei noastre pe suprafa\c ta perfora\c tiilor. \bigskip \bigskip [1] \, \textsc{S.N. Antontsev, A.V. Kazhikhov, Monakhov% }, \textit{Boundary Value Problems in Mechanics of Nonhomogeneous Fluids}, North-Holland, Amsterdam, 1990. \medskip [2] \, \textsc{I. Bejenaru, J. I. D\`{\i }az, I. I. Vrabie}, \emph{An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions}, Electronic Journal of Differential Equation, \textbf{48} (2001), 1-19. \medskip [3] \, \textsc{C. Timofte}, \emph{Modele matematice pentru studiul asimptotic al mediilor neomogene}, Editura Didactic\u a \c si Pedagogic\u a, 2003.