UNIVERSITY OF BUCHAREST
FACULTY OF PHYSICS

Guest
2024-11-22 1:27

 HOME     CONFERENCES     SEARCH            LOGIN     NEW USER     IMAGES   


Conference: Bucharest University Faculty of Physics 2018 Meeting


Section: Solid State Physics and Materials Science


Title:
Analysis of the current-voltage characteristics of an individual ZnO-CuO core-shell nanowire using Lambert W functions


Authors:
A. NITESCU (1), C. FLORICA (2), A. COSTAS (2), N. PREDA (2), A. KUNCSER (2), I. ENCULESCU (2), S. ANTOHE (1)


*
Affiliation:
1) University of Bucharest, Faculty of Physics, 405 Atomistilor Street, B.O.Box MG-11, Magurele –ILFOV, 077125 Romania

2) National Institute of Materials, Atomistilor 405A, Magurele –Ilfov, 077125 Romania


E-mail
nitescu.andrei25@yahoo.com


Keywords:
ZnO-CuO core-shell nanowire, radial p-n heterojunction


Abstract:
ZnO-CuO nanowires have been synthetized using 2 steps: thermal oxidation for the n type ZnO core and magnetron sputtering for the deposition of a thin film of p type CuO to act as a shell. The structural, morphological, optical and electric properties of the semiconducting nanowires have been studied. Pt/CuO-ZnO nanowire electrical contacts were investigated. A p-n radial heterojunction has been identified in the nanowire while an ohmic behavior was observed at the contact region of Pt and CuO. The Pt/CuO/ZnO/ structure is suitable for integration in diode type devices, more specifically p-n heterojunction diodes. Using Lambert W functions, a circuit model has been determined for individual ZnO-CuO core-shell nanowire based diode. The quality coefficient of the diode, shortcircuit current and the parasitic resistances compared to an ideal circuit were extracted from the simulation.


References:

[1] J. N. Tiwari, R. N. Tiwari și K. S. Kim, „Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices,” Progress in Material Science, vol. 57, nr. 4, pp. 724-803, May 2012.

[2] E. Boysen, N. C. Muir, D. Dudley și C. Peterson, HOW MATERIALS CHANGE IN NANOSCALE, 2nd ed., Nanotechnology For Dummies, 2nd Edition, 2011.

[3] R. Myslewski, Intel reveals 14nm PC, declares Moore's Law 'alive and well', The Register, 2013.

[4] Feyman, M. A. Gottlieb și R. Pfeiffer, „The Feynman Lectures on Physics,” California Institute of Technology,Hachette Book Group, 2006. [Interactiv]. Available: http://www.feynmanlectures.caltech.edu/II_toc.html.

[5] I. Munteanu, Fizica Solidului, Bucuresti, Bucuresti: Unibuc, 2003.

[6] S. A. Holgate, Understanding Solid State Physics, CRC Press, 2009.

[7] Ö. Ü., A. Y. I., L. C., T. A., R. M. A., D. S., A. V., C. S.-J. și M. H., „A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, vol. 98, nr. 4, 2005.

[8] A. B. Djurišić, X. Chen, Y. H. Leung și A. M. C. Ng, „ZnO nanostructures: growth, properties and applications,” Journal of Materials Chemistry, vol. 22, nr. 14, pp. 6526-6535, 2012.

[9] K.-R. A și J. T, „Zinc Oxide-From Synthesis to Application: A Review.,” Materials(Basel), vol. 7, nr. 4, pp. 2833-2881, 2014.

[10] M. Caglar, S. Ilican, Y. Caglar și F. Yakuphanoglu, „Electrical conductivity and optical properties of ZnO nanostructured thin film,” Applied Surface Science, vol. 255, nr. 8, pp. 4491-4496, 2009.

[11] U. Ozgur, D. Hofstetter și H. Morkoc, „ZnO Devices and Applications: A Review of Current Status and Future Prospects,” IEEE, vol. 98, nr. 7, pp. 1255-1268, 2010.

[12] Ç. Oruç și A. Altındal, „Structural and dielectric properties of CuO nanoparticles,” Ceramics International, vol. 43, nr. 14, pp. 10708-10714, 2017.

[13] C. Florica, A. Costas, A. G. Boni, R. Negrea, L. Ion, N. Preda, L. Pintilie și I. Enculescu, „Electrical properties of single CuO nanowires for device fabrication: Diodes and field effect transistors,” Appl.Phys.Lett, vol. 106, nr. 223501, 2015.

[14] R. G. Chaudhuri și S. Paria, „Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications,” Chem. Rev., vol. 112, nr. 4, pp. 2373-2433, 2012.

[15] S. Antohe, Materiale si dispozitive electronice organice, Bucuresti: Universitatii Bucuresti, 1996.

[16] R. Lerner și G. Trigg, Encyclopaedia of Physics, Wiley-VCH, 2003.

[17] J. Hook și H. Hall, Solid State Physics, Wiley-VCH, 1995.

[18] K. Takayanagi, Y. Kondo și H. Ohnishi, „Suspended Gold Nanowires: Ballistic Transport of Electrons,” JSAP International, vol. 3, 2001.

[19] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge : New York : Cambridge University Press, 1995.

[20] M. Grilj, Thermionic emission, Ljubljana: University of Ljubljana.

[21] M. E. Kiziroglou, X. Li, A. A. Zhukov, P. A. J. De Groot și C. H. De Groot, „Thermionic field emission at electrodeposited Ni-Si Schottky barriers,” Solid-State Electronics, vol. 52, nr. 7, pp. 1032-1038, 2008.

[22] R. A. Serway și C. Vuille, College Physics, Loose Leaf, 2012.

[23] K. S. Krane, Modern Physics by Kenneth S. Krane, Wiley, 1995.

[24] M. Pollak și B. Shklovskii, Hopping Transport in Solids, North Holland, 1991.

[25] N. F. Mott și R. W. Gurney, Electronic Processes in Ionic Crystals, Oxford: Clarendon Press, 1948.

[26] R. Coelho, Physics of Dielectrics for the Engineer, Elsevier, 2012.

[27] S. Antohe, L. Ion, F. Stanculescu, S. Iftimie, A. Radu și V.-A. Antohe, Fizica si tehnologia materialelor semiconductoare, Universitatii Bucuresti.

[28] M. Laughton și D. Warne, Electrical Engineer's Reference Book, Elsevier, 2003.

[29] P. a. R. Electronics, „http://www.physics-and-radio-electronics.com/,” Physics and Radio Electronics, [Interactiv]. Available: http://www.physics-and-radio-electronics.com/.

[30] A. Ortiz-Conde, F. J. G. Sanchez și J. Muci, „Exact analytical solutions of the forward non-ideal diode equation with series and shunt parasitic resistances,” Solid-States Electronics, vol. 44, nr. 10, pp. 1861-1864, 2000.

[31] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim și H. Yan, „One-dimensional Nanostructures: Synthesis, Characteization, and Applications,” Advanced Materials, vol. 15, nr. 5, 2003.

[32] R. C. Jaeger, Film Deposition. Introduction to Microelectronic Fabrication (2nd ed.), Prentince Hall Inc., 2002.

[33] Austrian Academy of Sciences,Nanotrust Dossier No. 006, „https://www.nanowerk.com/,” [Interactiv]. Available: https://www.nanowerk.com/how_nanoparticles_are_made.php.

[34] I. N. Levine, Physical Chemistry, CHEGG.

[35] J.N.Hasnidawani, H. Azlina, H. Norita, N. Bonnia, S. Ratim și E. Ali, „Synthesis of ZnO Nanostructures Using Sol-Gel Method,” Procedia Chemistry, vol. 19, pp. 211-216, 2016.

[36] Ö. A. Yıldırım și C. Durucan, „Synthesis of zinc oxide nanoparticles elaborated by microemulsion method,” Journal of Alloys and Compounds, vol. 506, nr. 2, pp. 944-949, 2010.

[37] P. M. Aneesh, A. V. M și M. K. Jayaraj, „Synthesis of ZnO nanoparticles by hydrothermal method,” Nanophotonic Materials IV, vol. 6639, 2007.

[38] R. S. Wagner și W. C. Ellis, „Vapor-liquid-solid mechanism of single crystal growth,” Appl.Phys.Lett, vol. 4:5, nr. 89, pp. 89-90, 1964.

[39] GmbH, Crystec Technology Trading, „LPCVD. Technology and Equipment.,” Crystec Technology Trading GmbH, [Interactiv]. Available: https://www.crystec.com/klllpcvde.htm.

[40] Aixtron SE, How MOCVD works. Deposition Technology for Beginners, AZO Materials, 2014.

[41] T. Mahalingam, V. John, M. Raja, Y. Su și P. Sebastian, „Electrodeposition and characterization of transparent ZnO thin films,” Solar Energy Materials and Solar Cells, vol. 88, nr. 2, pp. 227-235, 2005.

[42] I. Gurrappa și L. Binder, „Electrodeposition of nanostructured coatings and their characterization - a review,” Science and Technology of Advanced Materials, vol. 9, nr. 4, pp. 1468-6996, 2008.

[43] A. Y. Cho, J. R. Arthur și Jr, „Molecular beam epitaxy,” Progress in Solid State Chemistry, vol. 10, nr. 3, pp. 157-191, 1975.

[44] D. B. Chrisey, G. K. Hubler și J. W. &. Sons, Pulsed Laser Deposition of Thin Films, Wiley-Interscience, 1994.

[45] K. Ou, S. Wang, G. Wan, X. Zhang, X. Duan și L. Yi, „Structural, morphological and optical properties of ZnO films by thermal oxidation of ZnSe films,” Thin Solid Films, vol. 634, pp. 51-55, 2017.

[46] H. H. Erich, „Magnetron”. US Brevet 112, 977, 29 11 1935.

[47] H. Yu, J. Wang, Y. Yan, X. Wang, B. Gao, H. Liu și Y. Du, „ZnO thin films produced by the RF magnetron sputtering,” EMEIT, pp. 2486-2489, 2011.

[48] National Research Council, Small Wonders, Endless Frontiers: A Review of the National Nanotechnology Initiative, Washington,DC: National Academic Press, 2002.

[49] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu și S. Yang, „CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications,” Progress in Materials Science, vol. 60, nr. 1, pp. 208-237, 2014.

[50] S. Paul, J. Sultana, A. Banerjee, P. Singha și A. Karmaka, Electrical Characterization of n-ZnO NW/p-CuO Thin Film Hetero-Junction Solar Cell Grown by Chemical Bath Deposition and Vapor Liquid Solid Technique with Varying Reaction Time, SPPHY, 2017.

[51] R.Etefagh, E.Azhir și N.Shahtahmasebi, „Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi,” Scientia Iranica, vol. 20, nr. 3, pp. 1055-1058, 2013.

[52] Y. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma și J. Han, „Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties,” Applied Surface Science, vol. 317, pp. 414-421, 2014.

[53] K.Kawaguchi, R.Kita, M.Nishiyama și T.Morishita, „Molecular beam epitaxy growth of CuO and Cu2O films with controlling the oxygen content by the flux ratio of Cu/O+,” Journal of Crystal Growth, vol. 143, nr. 3-4, pp. 221-226, 1994.

[54] A. K. P. S. Dolai, S. D. R. Dey și R. B. S. Hussain, „Cupric oxide (CuO) thin films prepared by reactive d.c. magnetron sputtering technique for photovoltaic application,” Journal of Alloys and Compounds, vol. 724, nr. 2017, pp. 456-464, 2017.

[55] M. Yu, J. Lin și J. Fang, „Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process: A Simple Method To Obtain Spherical Miez-coaja Phosphors,” Chem. Mater, vol. 17, nr. 7, pp. 1783-1791, 2005.

[56] S. F. Chin, S. C. Pang și F. E. I. Dom, „Sol-gel synthesis of silver/titanium dioxide (Ag/TiO2) core-shell nanowires for photocatalytic applications,” Materials Letters, vol. 65, nr. 17-18, pp. 2673-2675, 2011.

[57] T. Gao, Q. Li și T. Wang, „Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites,” Chem.Mater., vol. 17, nr. 4, pp. 887-892, 2005.

[58] N.Selvi și S.Sankar, „Effect of Shells ZnO; SiO2 on SnO2 Hybrid Core-Shell Nanospheres and their Structural, Morphological and Magnetic Properties,” ChemTech, vol. 6, nr. 14, pp. 5665-5671, 2014.

[59] M. J, W. K și Z. M, „Growth Mechanism and Electrical and Magnetic Properties of Ag-Fe₃O₄ Core-Shell Nanowires,” ACS Appl Mater Interfaces, vol. 7, nr. 29, pp. 16027-16039, 2005.

[60] J. Jiang, H. Zhou, F. Zhang, T. Fan și D. Zhang, „Hydrothermal synthesis of core–shell TiO2 to enhance the photocatalytic hydrogen evolution,” Applied Surface Science, vol. 368, pp. 309-315, 2016.

[61] K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern și A. Mascarenhas, „Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Advanced Materials, vol. 20, nr. 17, pp. 3248-3253, 2008.

[62] C. Nico, L. Rino, M. Matos, R. Monteiro, F. M.Costa, T. Monteiro și M. P.F.Graça, „NbO/Nb2O5 core–shells by thermal oxidation,” Journal of the European Ceramic Society, vol. 33, nr. 15-16, pp. 3077-3083, 2013.

[63] J. Als-Nielsen și D. McMorrow, Elements of Modern X-ray Physics, Wiley, 2011.

[64] B. Warren, X-ray Diffraction, General Publishing Company, 1969.

[65] R. Egerton, Physical principles of electron microscopy, Springer, 2005.

[66] Williams, D & Carter, C. B., Transmission Electron Microscopy, Springer, 1996.

[67] T. Coenen, B. J. M. Brenny, E. J. R. Vesseur și A. Polman, „Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution,” MRS Bulletin, vol. 40, nr. 4, pp. 359-365, 2015.

[68] T. E. Everhart și R. F. M. Thornley, „Wide-band detector for micro-microampere low-energy electron currents,” Journal of Scientific Instruments, vol. 37, nr. 7, pp. 246-248, 1960.

[69] J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer și J. Michael, Scanning Electron Microscopy and X-ray Microanalysis, Springer, 2003.

[70] R. Clark, Reflectance Spectra.AGU Handbook of Physical Constants, AGU Reference Shelf, 1995.

[71] H. G. Hecht, „The Interpretation of Diffuse Reflectance Spectra,” Journal of Research of the National Bureau of Standards, 1976.

[72] J. Lähnemann, U. Jahn, O. Brandt, T. Flissikowski, P. Dogan și H. (. Grahn, „Luminescence associated with stacking faults in GaN,” Journal of Physics D: Applied Physics, vol. 47, nr. 42, 2014.

[73] B. J. Lin, Optical Lithography, Errata, 2010.

[74] M. A. McCord și M. J. Rooks, SPIE Handbook of Microlithography, SPIE, 2000.

[75] R. Hayes, A. Ahmed, T. Edge și H. Zhang, „Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography,” Journal of Chromatography A, vol. 1357, pp. 36-52, 2014.

[76] P. F. Echlin, G. C.E., J. D. J. și D. Newbury, Advanced Scanning Electron Microscopy and X-Ray Microanalysis, Springer, 1986.

[77] C. Florica, N. Preda, A. Costa, I. Zgura și I. Enculescu, „ZnO nanowires grown directly on zinc foils by thermal oxidation in air: Wetting and water adhesion properties,” Materials Letters, vol. 170, pp. 156-159, 2016.

[78] C. Florica, A. Costas, A. Kuncser, N. Preda și I. Enculescu, „High performance FETs based on ZnO nanowires synthesized by low cost methods,” Nanotechnology, vol. 27, nr. 47, 2016.