UNIVERSITY OF BUCHAREST
FACULTY OF PHYSICS

Guest
2024-11-23 17:48

 HOME     CONFERENCES     SEARCH            LOGIN     NEW USER     IMAGES   


Conference: Bucharest University Faculty of Physics 2022 Meeting


Section: Theoretical Physics and Applied Mathematics


Title:
Generalization of principles of extremum. The principle of evolution. Elimination of principles in physics


Authors:
Mircea BARBUCEANU


Affiliation:
University of Pitesti, Faculty of Sciences, 110040, Pitesti, Targu din Vale St., no.1, Arges, Romania, Phone: +40 348-453100, Fax: +40 348-453123, www.upit.ro


E-mail
mircea_barbuceanu@yahoo.com


Keywords:
principles of extremum, exelix, principle of evolution


Abstract:
The ultimate goal of science is to describe the state and evolution of all material systems in terms of eliminating known principles, each principle being an unanswered question at this time. The existence of extremum principles in many scientific fields, equivalent to the fundamental principles governing the corresponding class of evolutions, and a recent paper that showed that such principles work in the living world, led us to seek a universal principle of extremum. This is the principle of evolution, formulated in absolutely general conditions and without postulating any physical hypothesis. Only two general principles of mathematical modeling were stated, meant to "standardize" the discussion framework. The success of the general modeling of material reality evolution is also due to the natural construction of the energy concept developed in a previous study, which eliminated the principle of conservation and transformation of energy and offered a fundamental scheme of reasoning.


References:

1. de Maupertuis, P-L.M., Les Loix du Mouvement et du Repos déduites d'un Principe Metaphysique, Mémoires de l'Academie Royale des Sciences et Belles Lettres de Berlin, 267-294, 1746

2. Euler, L., Methodus Inveniendi Lineas Curvas Maximi Minive Proprietate Gaudentes, Bousquet, Lausanne et Geneva, 1744; reprint in: Leonhardi Euleri, Opera Omnia, Series I, vol 24, C. Cartheodory (ed.) Orell Fuessli, Zurich, 1952

3. Lagrange, J.L., Mécanique Analytique, Gauthier-Villars, 2nd ed., Paris, 1888; translated in: Analytic Mechanics, Klumer Academic, Dordrecht, 2001

4. Hamilton, W.R., On a general method in dynamics, by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central Relation or characteristic Function, Philos. Trans; R. Soci., Part II, 247-308, 1834

5. Boltzmann, L., Vorlesungen über Gastheorie, J.A. Barth, Leipzig, vol. I, 1896

6. Boltzmann, L., Vorlesungen über Gastheorie, J.A. Barth, Leipzig, vol. II, 1898

7. Møller, C., The Theory of Relativity, Clarendon Press, Oxford, 1966

8. Feynman, R.P., Leighton, R.B., Sands, M., The Feynman Lectures on Physics, AddisonWesley, Reading, MA, 1964

9. Oettler J., Schmid V.S., Zankl N., Rey O., Dress A., Heinze J., Fermat’s Principle of Least Time Predicts Refraction of Ant Trails at Substrate Borders, PLOS ONE, 2013

10. Gray, C.G., Taylor, E.F., When action is not least, Am. J. Phys, 75, 434-458, 2007

11. Šilhavý, M., Extremum Principles; in: The Mechanics and Thermodynamics of Continuous Media. Texts and Monographs in Physics, Springer, Berlin, Heidelberg, 1997

12. Hillert, M., Ågren, J., Extremum principles for irreversible processes, Acta Materialia, 54 (8), 2063-2066, 2006

13. Gyarmati, I., Non-equilibrium Thermodynamics: Field Theory and Variational Principles, Springer, Berlin, 1970

14. Sawada, Y., A thermodynamic variational principle in nonlinear non-equilibrium phenomena, Progress of Theoretical Physics, 66 (1), 68–76, 1981

15. Sieniutycz, S., Farkas, H., Variational and Extremum Principles in Macroscopic Systems, Elsevier Science, 3rd ed., 2005

16. Dugas, R., A History of Mechanics, Dover, New York, 254–275, 1988

17. Keenan, J.H., Shapiro, A.H.: History and exposition of the laws of thermodynamics, Mech. Eng., 69, 915–921, 1947

18. Born, M., Wolf, E., Principles of Optics, Cambridge U.P., Cambridge, 7th ed., 1999

19. Landau, L.D., Lifshitz, E.M., Mechanics, Course of Theoretical Physics, Buttreworth-Heinemann, London, 3rd ed., 1976