UNIVERSITY OF BUCHAREST
FACULTY OF PHYSICS

Guest
2024-11-23 17:45

 HOME     CONFERENCES     SEARCH            LOGIN     NEW USER     IMAGES   


Conference: Bucharest University Faculty of Physics 2023 Meeting


Section: Theoretical Physics and Applied Mathematics


Title:
Decoherece in Gaussian Initial Walker State Quantum Walks With Application in Solving The Three Body Problem


Authors:
Maria-Catalina ISFAN (1,2), Laurentiu CARAMETE (1), Ana CARAMETE (1)


Affiliation:
1) Institute of Space Science, Magurele-Bucharest

2) Faculty of Physics, University of Bucharest


E-mail
maria.isfan@spacescience.ro


Keywords:
quantum walk, three-body problem


Abstract:
In this paper, we propose a new method to approach the Three-Body Problem, using the quantum walk algorithm that we modify by initiating the walker state with a Gaussian distribution and introducing decoherence through asymmetric depolarizing noise and amplitude damping noise. For robust statistical analysis and statistical tests, we compute the one-body energy probability distribution for a large number (10 000) of initial conditions sets and build a collection of probability densities of decoherent discrete-time Gaussian initial walker state quantum walk, with specific parameters. We show that 70% of one-body energy probability distributions are equated with the collection of our modified quantum walk probability densities. This signifies that the modified quantum walk algorithm reproduces the energy probability distributions of a body that interacts gravitationally with other two bodies, leading to a new view of solving the Three Body Problem.


References:

[1] Abbott, B. P., & others. (2017). Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. The Astrophysical Journal, 848, L13. doi:10.3847/2041-8213/aa920c

[2] Belbruno, E. (2009). Random walk in celestial mechanics. Regular and Chaotic Dynamics, 14, 7–17. doi:10.1134/S1560354709010031

[3] Breen, P. G., Foley, C. N., Boekholt, T., & Zwart, S. P. (2020, April). Newton versus the machine: solving the chaotic three-body problem using deep neural networks. Monthly Notices of the Royal Astronomical Society, 494, 2465-2470. doi:10.1093/mnras/staa713

[4] Danzmann, K., & the LISA study team. (1996). LISA: laser interferometer space antenna for gravitational wave measurements. Classical and Quantum Gravity, 13, A247–A250. doi:10.1088/0264-9381/13/11a/033

[5] Ginat, Y. B., & Perets, H. B. (2021, July). Analytical, Statistical Approximate Solution of Dissipative and Nondissipative Binary-Single Stellar Encounters. Physical Review X, 11. doi:10.1103/physrevx.11.031020

[6] Kitaev, A., & Webb, W. A. (2009). Wavefunction preparation and resampling using a quantum computer. Wavefunction preparation and resampling using a quantum computer.

[7] Maggiore, M., Broeck, C. V., Bartolo, N., Belgacem, E., Bertacca, D., Bizouard, M. A., . . . Sakellariadou, M. (2020, March). Science case for the Einstein telescope. Journal of Cosmology and Astroparticle Physics, 2020, 050. doi:10.1088/1475-7516/2020/03/050

[8] Musielak, Z. E., & Quarles, B. (2014, June). The three-body problem. Reports on Progress in Physics, 77, 065901. doi:10.1088/0034-4885/77/6/065901